A*算法 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中; //还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。象局
部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的
节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点(除非该节点是死节点),在每一步的估价
中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?其实A*算法也是一种最
好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!
我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做
近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)
[转]A*算法

心情分类
推荐日记
分享排行